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Cedex 4, France

Received 1st March 2004 / Received in final form 11 June 2004
Published online 30 September 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. The Bloch’s theory of effective Hamiltonians has been used to improve the Real Space Renor-
malization Group approach. The effective interactions between elementary blocks of a periodic lattice can
be extracted from the knowledge of the spectrum of the dimers or trimers of blocks. The potentialities of
the method are illustrated on a series of quasi 1-D and 2-D problems. The spin gap of two-leg ladders is
calculated and an estimate of the impact of ferromagnetic couplings between two-leg ladders on the gap is
presented. The method satisfactorily identifies the phase transitions in the 1/5-depleted square lattice as
well as in the spin-frustrated Shastry-Sutherland lattice. The J2/J1 checkerboard lattice is studied and a
location of the phase transition between the Néel phase and the dimer phase is proposed.

PACS. 71.10.-W Theories and models of many-electron systems – 71.15.Nc Total energy and cohesive
energy calculations – 75.10.-b General theory and models of magnetic ordering

1 Introduction

The real-space renormalization-group has been suggested
by Wilson as a seducing idea for the treatment of the
electron or spin periodic lattices [1]. The proposal goes
through the definition of blocks or supersites, which may
in principle be identical or different but which define an-
other lattice of a different scale. The basic idea was to
reduce the Hilbert space by considering only a few eigen-
states of the Hamiltonian in each block and the products of
these selected eigenstates in the treatment of superblocks.
If each block i bears a mean number m of particles on
its n sites, one may solve the eigenvalue problem for each
block with m particles on these n sites, defining a finite
subspace of projector Pn,i

Pn,iHPn,iΦk,i = EkΦk,i, (1)

and one may retain only m states Φk,i, for instance those
of lowest energies. They define a m-dimensional space si

on each block. For the treatment of the superblock, made
of N blocks, one will consider the space SN spanned by
the products of the selected states Φk,i in each block, i.e.,

SN = s1 ⊗ · · · ⊗ si ⊗ · · · ⊗ sN . (2)

Let call PSN the projector on this space. It is hoped that
the diagonalization the corresponding truncated Hamilto-
nian PSNHPSN will provide reasonable approximations of
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the exact eigenvalues for the N blocks. This idea is very
elegant since it may be iterated by considering blocks of
blocks, and so on. In general the problems at the differ-
ent steps, i.e., for the different scales, are isomorphic and
one converges to one of the accumulation points of the
problem.

Unhappily the numerical efficiency of the algorithm is
poor. It fails for instance on the elementary problem of
the lowest eigenenergy of the one electron tight-binding
Hamiltonian for the 1-D chain. The failure has led to
abandon the original RSRG, and to the conception of
a deeply different procedure, namely the Density-Matrix
Renormalization-Group [2,3]. This last procedure is very
efficient, but essentially limited to 1-D lattices. In a pre-
vious paper [4], two of the authors suggested a possible
improvement of the RSRG technique by introducing ef-
fective interactions between the blocks, which they called
RSRG-EI. They made use of the Bloch’s theory of effective
Hamiltonians [5] to define these effective interactions from
the exact spectrum of the dimers or trimers of blocks. The
few numerical simple illustrations given in reference [4]
appeared to be very encouraging. The applications con-
cerned spin lattices. The blocks involved odd number of
sites and had a doublet ground state. This state was the
only one retained, and therefore each block could be seen
as an effective spin Sz = ±1/2. The method was applied to
blocks of different sizes and the results were extrapolated
with respect to the number of sites of the blocks.

The present paper illustrates the potentialities of the
method for the study of quasi 1-D and of 2-D systems. The
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study of the spin gap in a ferro-antiferromagnetic chain
and in two-leg ladders allows one to discuss briefly some
methodological points regarding a few degrees of freedom
of the method concerning the shape of the blocks and the
extraction of effective interactions from dimers or trimers
of blocks. The applications to 2-D systems concern

– the impact of the weak interladder ferromagnetic in-
teraction in SrCu2O3 on the spin gap of that lattice;

– the phase transition of the spin non-frustrated 1/5-
depleted lattice;

– the phase transition occurring in the Shastry-
Sutherland and checkerboard frustrated lattices.

It will be shown that the method provides a direct and
elegant identification of the critical interactions, i.e., of
the phase transitions for these three 2-D lattices.

2 The Bloch’s theory of effective Hamiltonian
and its use for the definition of effective
interactions between blocks

2.1 Bloch’s theory of effective Hamiltonians

The concept of effective Hamiltonians receives various def-
initions. Its most rigorous acception will be recalled here.
In general the effective Hamiltonians are built by applying
Quasi Degenerate Perturbation Theory to a given model
space, after a proper partition of the Hamiltonian into
a zero order H0 operator and a perturbation operator
V = H − H0. The effective Hamiltonian is obtained at
convergence of the perturbation expansion. Bloch has pro-
vided a more general formulation of this concept [5]. The
Bloch’s theory of effective Hamiltonians [5] is based on
a one-to-one correspondence between two isodimensional
subspaces. One considers first a m-dimensional model
space, onto which one would like to build an effective
Hamiltonian. This model space is spanned by selected con-
figurations |I〉, which are supposed to play a privileged role
in the wave functions |Ψk〉 of the exact Hamiltonian which
are of special interest, for instance the lowest eigenstates.
Let call S0 the model space and P0 its projector

P0 =
∑

I∈S0

|I〉〈I| I = 1, m. (3)

The effective Hamiltonian will be built in the model space

Heff = P0H
eff P0 + 0(1 − P0)Heff (1 − P0). (4)

The maximum task that Heff may fulfill is that its m
eigenvalues are exact eigenvalues and that its eigenvectors
are the projections of the corresponding exact eigenvectors
in S0. This means that if

HΨk = EkΨk, ∀ k, (5)

then
Heff |P0Ψk〉 = Ek|P0Ψk〉, k = 1, m. (6)

The m eigenstates Ψk which are targeted by the effective
Hamiltonian span the so-called target space [6] S of pro-
jector P , isodimensional to the model space, and the wave
operator Ω sends from S0 to S,

P = ΩP0, Heff = P0HΩP0. (7)

The effective Hamiltonian is based on a correspondence
between the model space and an isodimensional stable
subspace of H .

Although the choice of S may be in principle arbitrary
provided that Ω exists, i.e., that the projection of the
eigenvectors |Ψk〉 of S have linearly independent projec-
tions on S0, a rational choice of S satisfies the condition

∑

k∈S

||P0Ψk|| maximum, (8)

i.e., the target space is spanned by the m eigenstates of
H having the largest projections in the model space. No-
tice that these projections are not necessarily orthogonal,
although 〈Ψk|Ψl〉 = δkl

〈P0Ψk|P0Ψl〉 �= λkδkl. (9)

Let call the S the overlap matrix of these projections. The
spectral definition of Heff in the Bloch’s formalism is

Heff =
∑

k

|P0Ψk〉Ek〈P0Ψ
⊥
k |, (10)

where 〈P0Ψ
⊥
k | is the bi-orthogonal vector associated to

|P0Ψk〉. This effective Hamiltonian is not hermitian

〈I|Heff |J〉 �= 〈J |Heff |I〉. (11)

Hermiticity is a desirable property of transferable effective
Hamiltonian. It can be restored by any kind of orthogo-
nalization of the |P0Ψk〉′s, either symmetrical using the
least motion S−1/2 transformation, as proposed by des
Cloizeaux [7], or hierarchized according to the Schmidt
procedure.

2.2 Definition of effective interactions in the RSRG
method

The preceding formalism may be used to improve the orig-
inal RSRG method. Again one defines blocks (which may
be identical or different) of a moderate size n, such that
their exact spectrum can be calculated. One selects for
each block I a set of M low energy eigenvectors Φk,I

(k = 1, M). Then one will consider a dimer of blocks AB
(or a trimer of blocks ABC), and a model space defined
by the M2 (or M3) products

Φkl,AB = Φk,AΦl,B or Φklm,ABC = Φk,AΦl,BΦm,C ,
(12)

PSAB =
∑

k=1,M

∑

l=1,M

|Φkl,AB〉〈Φkl,AB |. (13)



M. Al Hajj et al.: Real space renormalization group with effective interactions 13

The basic idea consists in establishing the effective Hamil-
tonian in this model space in order to evaluate effective
interactions between the vectors Φkj,AB and Φgh,AB . One
may eventually use the quasi-degenerate perturbation the-
ory to second order

〈Φkl,AB |Heff |Φgh,AB〉 = 〈Φkl,AB |H |Φgh,AB〉
+

∑

r

∑

s
r and/or s>M

〈Φkl,AB |H |Φrs,AB〉〈Φrs,AB|H |Φgh,AB〉
E0

gh,AB − E0
rs,AB

.

(14)

One sees from that formula that the effective Hamiltoni-
ans incorporates the indirect effect of the eigenstates of
the blocks which have not been selected in the fragments.
Rather than using this perturbative approach [8], we pre-
fer to use blocks of a sufficiently small size, in order to solve
exactly the dimer (or the trimer) Hamiltonian. Knowing
its relevant eigenvectors Ψl,AB (i.e., target space)

HABΨl,AB = El,ABΨl,AB, (15)

one may use the spectral definition of the exact effec-
tive Hamiltonians (Eq. (10)) in order to calculate the
effective interactions between the blocks A and B, i.e.,
the 〈Φkl,AB |Heff |Φgh,AB〉 matrix elements. In the treat-
ment of superblocks, consisting of n blocks, or of dimers
of superblocks, consisting of 2n blocks, one uses the
〈Φkl,IJ |Heff |Φgh,IJ〉 matrix elements between the blocks I
and J. The same strategy is repeated till convergence, i.e.,
till the disappearance of some interactions and the invari-
ance of other ones. At each step effective interactions are
calculated from the dimer or trimer spectrum through the
use of effective Hamiltonian theory.

2.3 Dimers versus trimers, the size complexity
dilemma

For spin 1/2 systems in which each site bears one spin, up
or down, obeying a Heisenberg Hamiltonian

H =
∑

〈i,j〉
2Jij(SiSj − 1/4), (16)

the simplest application of the effective Hamiltonian the-
ory will consist in

– the consideration of blocks composed of an odd (2n+1)
number of sites, such that their ground state is a non-
degenerate doublet state;

– the reduction of the possible states of each blocks to
this Sz = ±1/2 ground state. In such a case the unique
degree of freedom in the block is its spin, the block can
be seen as a supersite of Sz = ±1/2 effective spin, and
one immediately understands that the effective Hamil-
tonian will be a S = 1/2 Heisenberg Hamiltonian. If
the ground state of the block was a quartet the ef-
fective Hamiltonian would be a S = 3/2 Heisenberg
Hamiltonian. Degenerate ground states of the blocks
would imply to handle an orbital degeneracy.

A. From dimers: let a and ā (resp. b and b̄) label the
ground state wave functions of the blocks A (resp. B) and
EA and EB the corresponding eigenenergies. The simplest
extraction of the effective interaction between A and B
will be obtained from the spectrum of the AB dimer. The
model space is composed of the products āb and ab̄ for
Sz = 0 and generates a singlet (ab̄− āb)/

√
2 and a triplet

(ab̄+ āb)/
√

2. If we know the two eigenstates of AB having
the largest projections on the model space, and which are
necessarily a singlet ΨS

AB and a triplet ΨT
AB, and if we call

ES
AB and ET

AB the associated eigenenergies, the effective
interactions between the blocks are

– a scalar quantity, equal to ET
AB − EA − EB = RAB;

– an effective spin coupling of intensity 2Jeff
AB = ET

AB −
ES

AB.

In general it is hoped that the ground state of AB, and
eventually the lowest excited state, are the states of largest
projections in the model space. If the former condition is
not fulfilled, the definition of the block should be revised.
If the second one is not fulfilled the ability of the effective
Hamiltonian to reproduce the spin gap of larger systems
is questionable.

B. From trimers: one might as well try to extract the
interactions from a trimer ABC. The Sz = 1/2 model
space is spanned by ābc, ab̄c and abc̄, it generates two
doublet states and a quartet state. In full generality the
effective Hamiltonian will take the form

ābc
ab̄c
abc̄

−Jab − Jac Jab Jac

Jab −Jab − Jbc Jbc

Jac Jbc −Jbc − Jac

. (17)

It involves 3 spin couplings, the three parameters cannot
be determined from the energies of the two doublet states
ED1

AB and ED2
AB and of the quartet state EQ

AB of AB having
the largest projections in the model space. Let call ΨD1

AB
the lowest doublet. The projection in the model space is

P0Ψ
D1
AB = λābc + µab̄c + νabc̄, (18)

with λ2 + µ2 + ν2 = 1. It is easy to show that since it
is a doublet λ + µ + ν = 0. Hence there is one and only
one degree of freedom in the content of this projection.
If one wants the effective Hamiltonian to be hermitian,
the second doublet state, orthogonal to the lowest one, is
entirely determined

ΨD2
AB = λ′ābc + µ′ab̄c + ν′abc̄, (19)

with λ′2+µ′2+ν′2 = 1 ; λ′+µ′+ν′ = 0 ; λλ′+µµ′+νν′ =
0. The effective interactions are obtained from the two
energy gaps EQ −ED1 , EQ −ED2 and from the λ/µ ratio
of the first eigenvector, according to the equations.

Jab = λ(EQ − ED1)µ + λ′(EQ − ED1)µ
′, (20)

Jbc = µ(EQ − ED1)ν + µ′(EQ − ED1)ν
′, (21)

Jac = λ(EQ − ED1)ν + λ′(EQ − ED1)ν
′. (22)
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This case illustrates the use of the information contained
in the projected eigenvector to define the effective inter-
actions.

Notice that extracting the information from trimers of
blocks rather than from dimers

– compels to consider smaller blocks, the practical bot-
tleneck of the method being the exact diagonalization
of the oligomer, its size is limited to about 25 sites,
C13

25 spin distributions for Sz = 1/2, which means that
one may go to 11 sites blocks for dimers, 7 sites blocks
for trimers;

– introduces a more sophisticated Hamiltonian, which
one may hope to bear more physics;

– requires the identification of more target states, which
may sometimes be problematic.

The balance of advantages and inconveniences will be il-
lustrated hereafter.

2.4 Comparison with other recent proposals

One should mention here the recent development of
a method, labelled CORE (Contractor Renormalization
Group [9]), which makes use of the theory of effective
Hamiltonians for the study of periodic lattices. The au-
thors also define blocks and treat oligomers of blocks.
They use smaller blocks than we do (usually with even
number of sites), but keep more than one block eigenstate
to define the model space. The resulting effective Hamil-
tonians is therefore more complex than the starting one.
The method does not maintain the isomorphism exploited
in our RSRG version and the algorithm is not iterated, but
produces excellent results [10–12].

3 The two-leg ladders with weak
ferromagnetic interactions

The present section with apply the RSRG technique to
study the spin gap of two-leg ladders and the impact of
weak ferromagnetic couplings between adjacent ladders on
the spin-gap. The study will proceed first by a study of
the F-AF 1-D chain, on which the two-leg ladder well be
mapped in a second time.

3.1 The F-AF 1-D chain

The ferro-antiferro (F-AF) simple chain with J1 > 0, J2 <
0 may be characterized by

J̄ =
J1 − J2

2
, δ =

J1 − J2

J1 + J2
. (23)

The simplest definition of the blocks consists in using
(2n+1) sites blocks. They will be coupled either ferromag-
netically or antiferromagnetically as evident from Figure 1
where the lowest energy spin distribution has been pic-
tured according to Ovchinnikov [13]. In the dimer-based
approach the target vectors are the ground state triplet
and the lowest singlet for the ferromagnetically coupled
dimer AB, the ground state singlet and the lowest triplet

* * * * *o o o o

A B A

�

* * o
A B A

Jeff
2 Jeff

1

Jeff
3

F coupling J2

AF coupling J1

Fig. 1. Principle of the extraction of effective interactions be-
tween blocks for a F-AF 1-D chain.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 2. Dependence the gap for a F-AF 1-D chain on the
parameter δ equation (23). Comparison between RSRG-EI (◦),
Exact diagonalization [14,15] (�), and Pair-DCEFA [16] (+).

for the AF coupled dimer BA. They always are the two
lowest states. In the trimer-based approach, which also
provides a second-neighbor interaction Jeff

3 , the target
space is composed of the two lowest doublet and the low-
est quartet states, without ambiguity. Actually the values
of Jeff

3 fall rapidly when the block size increases and the
values of the first neighbor interaction are not very dif-
ferent when extracted from the dimer or from the trimer,
but the (much smaller) value of the F effective interaction
may differ by a factor two.

The extrapolated values of the gap calculated from
dimers and trimers are practically indistinguishable (de-
viation ∼ 0.1%) as seen in Figure 2. The results of the
method compare excellently with those obtained by ex-
trapolations of exact diagonalization [14,15] and behave
more correctly than the Pair-DCEFA [16] approximation
in the region δ → −1.

3.2 Mapping of the two-leg ladder into
a ferro-antiferromagnetic chain

The two-leg ladders with AF interactions along the legs
J‖ and the rungs J⊥ are known to present a spin gap
whatever the J ′ = J⊥/J‖ ratio [17–22].
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* * *

o o o

o o o

Sz = 1 Sz = −1

Fig. 3. Mapping the two-leg ladder into a S = 1 AF chain.
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Fig. 4. Alternative mapping of a two-leg ladder into a S = 1
AF chain.
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* * *

o o o o

o o o o

J
(1)
1J

(1)
2

J
(1)
3

Fig. 5. Mapping of the two-leg ladder in a S = 1/2 F-AF
chain.

For a two-leg ladder one might define triplet ground
state blocks with (4n + 2) sites according to Figure 3.
These local triplets will be coupled antiferromagnetically,
with equal interactions, and the ladder is mapped into
a chain of S = 1 blocks, presenting a Haldane gap [23].
A similar mapping is possible with 4n sites blocks of a
different shape leading to the same conclusion (Fig. 4).

It should be remarked that in such blocks the excited
singlet state is low in energy and the bi-quadratic term of
the effective Hamiltonian would be quite large.

A more convenient mapping proceeds through the con-
sideration of (2n + 1) sites blocks. The simplest solution
consists in a partition into blocks of equal size and shape.
As appears clearly from Figure 5 the nearest-neighbor in-
teractions are of alternating ferro and antiferro character.

The ladder is therefore mapped into a F-AF chain,
which is gapped, as already discussed. A quantitative ap-
plication of this mapping has been performed, using either
dimers or trimers of blocks. The size of the blocks may be
Ns = 3, 5, 7, 9 and 11 for dimers, Ns = 3, 5, 7 for trimers.
One may see in Table 1 that the leading effective interac-
tions is the antiferromagnetic interblock coupling J1, the
values of which is almost the same, for a given size of the
blocks, when extracting from dimers or trimers. The value
of the ferromagnetic interaction is lower but significantly
different when working with trimers. The calculated gap
for the mappings from dimers and trimers are reported in
Figure 6, after extrapolation on the size-blocks. One may
first concentrate on the isotropic case J⊥ = J‖ = 1, which
has been studied by other techniques. From the dimer of
blocks after extrapolation on the size of the blocks one
obtains a value of 0.530J . One may mention here that the

Table 1. Effective interactions between blocks of various sizes
(Ns) for the mapping of a two-leg ladder (J‖ = J⊥ = 1) on a
F-AF chain, extracted from either dimers or trimers.

Ns dimers trimers

J
(1)
1 = 0.819190 J

(1)
1 = 0.824305

3 J
(1)
2 = −0.333230 J

(1)
2 = −0.344646

J
(1)
3 = 0.276585

J
(1)
1 = 0.713618 J

(1)
1 = 0.696924

5 J
(1)
2 = −0.201050 J

(1)
2 = −0.106358

J
(1)
3 = 0.111677

J
(1)
1 = 0.651990 J

(1)
1 = 0.630380

7 J
(1)
2 = −0.105133 J

(1)
2 = −0.060201

J
(1)
3 = 0.052666

J
(1)
1 = 0.614038

9
J

(1)
2 = −0.054940

J
(1)
1 = 0.589050

11
J

(1)
2 = −0.028920

0 0.2 0.4 0.6 0.8 1
0
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0.4
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0.6

0.7

0.8

0.9

1

Fig. 6. Calculated spin gap for a two-leg ladder as a function of

the J⊥
J‖+J⊥ ratio, in J⊥ units. (�) Quantum Monte Carlo [24], (-

) Perturbative estimate [25], (◦) this work with AF-F mapping
from of identical (2n + 1) sites blocks, (+) this work, same
mapping, effective interactions form trimers.

same value, 0.530J , is obtained when defining alternat-
ing blocks of (4n + 1) and (4n + 3) sites, which leads to
a dimerized antiferromagnetic chain (already studied in
reference [4] from an RSRG approach). This results illus-
trates the stability of the method with respect to the de-
sign of blocks. A lower result is obtained from the trimers
0.500J , which is closer to the previously reported val-
ues 0.502J for Quantum Monte Carlo [24] and 0.504J for
DMRG [17]. The agreement between all methods is excel-
lent in the region J⊥ > J‖ (weakly coupled rungs) as seen
in Figure 6. It becomes more problematic in the region of
weakly coupled AF legs J⊥ < J‖. The gap calculated from
the dimers increases instead of stabilizing close to 0.41J⊥.
It is easy to understand that the mapping becomes irrele-
vant in this domain since the ground state of the (2n + 1)
sites blocks becomes the product of a singlet on a leg and
of a doublet on the other one (cf. Fig. 7). The interactions
prevail along the legs and the second-neighbor interaction
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(•) (•)

(•)S S

S

Fig. 7. Prevalence of the 2nd neighbor interactions for weakly
coupled legs.

between the doublets A and C, localized on the same leg,
becomes dominant. The mapping from the trimers takes
this interaction into account and the calculated gap has
a qualitatively correct behavior, keeping a constant value
for J⊥ < J‖. The calculated value, 0.5J⊥, is larger than
the correct one (0.41J⊥) but the behavior of the gap is
correct. This is a case where considering trimers instead
of dimers improves the quantitative and qualitative per-
formances of the method, but the physical origin of the
superiority of the trimers in this case is clear.

3.3 Ferromagnetically coupled two-leg ladders

Several studies have been performed concerning weakly
coupled two-leg ladders, either ferromagnetically or anti-
ferromagnetically [15,26]. However in these studies, each
site of a ladder is only coupled with one site of the neigh-
bor ladder. The physics of the interactions is different for
the SrCu2O3 lattice which can be seen as independent
planes containing parallel two-leg ladders but where the
adjacent ladders are translated by half of the on-leg Cu-
Cu distance, and the distance between the legs of adjacent
ladders is small [27]. Recent ab initio calculations [28] have
predicted a ferromagnetic interaction J int to exist between
the closest Cu atoms of distinct ladders. These calcula-
tions also predict a ratio J⊥/J‖ = 0.9, i.e., close to 1. One
may mention the controversy regarding the J⊥/J‖ ratio,
which originates in the fact that using a simple Heisenberg
Hamiltonian for an isolated ladder the interpretation of
some experiments suggests J⊥/J‖ = 1, while other prop-
erties require a much smaller ratio J⊥/J‖ = 0.5. A possi-
ble explanation of this discrepancy had to be searched in
the neglect of either four-body operators, which may be
important in plaquettes [29–33], or of interladders inter-
actions.

Recent works have shown that

– the influence of 4-body operators on the gap may be
rather large [34],

– the amplitude of the 4-body operator is much larger in
ladders than in La2CuO4 2-D lattice, according to ac-
curate ab initio calculations performed along the same
methodology [35,36],

– the interladder interactions have a weak impact on the
gap [37], at least for the proposed ratios of the J ’s.

We have nevertheless calculated this last influence using
our method, in order to compare with this last result [37].
We have defined similar (2n + 1) sites blocks on ladders,
which transform them into F-AF chains, and have deter-
mined effective interactions between blocks belonging to

���
J int

A AA′ A′

B BB′ B′

•

•

•

•

A A′

B B′

J1
(1)

J1
(1)

J6
(1) J6

(1)

J3
(1)J4

(1)

•

•

•

•

J2
(1)

J2
(1)

J8
(1) J8

(1)

J5
(1)J7

(1)

A′ A

B′ B

Fig. 8. Definition of the effective interactions in the RSRG
treatment of coupled two-leg ladders.

different ladders. This extraction rests on the considera-
tion of tetramers of Ns = 5 sites. Two types of tetramers
have to be considered (Fig. 8). Taking J‖ = J⊥ = 1,
J int = −J‖/5 (as suggested by Ref. [23]) one obtains
J1

(1) = 0.7122, J2
(1) = −0.2002, J3

(1) = −0.01614,
J4

(1) = −0.0346, J5
(1) = 0.01462, all other interactions

including the four-blocks operators being smaller than
10−2. The values of J1 and J2 compare well with those
obtained from dimers in the isolated ladder J

(1)
1 = 0.7136,

J
(1)
2 = −0.2010, for same size blocks. Then one may study

various rectangular clusters of blocks, belonging to ei-
ther one, two, three or four ladders, with a total num-
ber of 20 blocks. A double extrapolation on the length
and width of these rectangles leads to the conclusion that
the lowering of the gap by the interladder interactions is
−0.035J‖ = +0.21J int. This result is in agreement with
the recent result of reference [33], and confirms that the
contradictions faced by the interpretation in terms of a
simple J‖/J⊥ Heisenberg Hamiltonian cannot be solved
by introducing the interladder interactions.

4 The 1/5-depleted Heisenberg square lattice
revisited

The 1/5-depleted spin square lattice has received some
attention from theoreticians during the last decade since
it was supposed to represent correctly the CaV4O9 lat-
tice, which presents a spin gap. It happened that the
1-3 interactions between next-nearest neighbor atoms
are important, but the simple lattice pictured in Fig-
ure 9, composed of plaquettes and bonds, already presents
an interesting physics. Accurate Quantum Monte Carlo
calculations [38] confirm the suggestion of perturbative
approaches [39], namely the existence of three phases,
when the ratio of the spin coupling in the plaquette
Jp to the coupling in the bonds Jd varies. One may
take λ = Jp/(Jp + Jd) as a parameter, varying be-
tween 0 and 1. For strong values of λ the lattice can
be seen as composed of weakly interacting plaquettes.
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Fig. 9. Definition of 9 sites blocks leading to isomorphic lattices in the 1/5-depleted square lattice.
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When λ is small the dimer singlets on bonds are weakly
coupled. In between the lattice can be seen as a Néel
ordered phase surviving to the depletion. QMC calcula-
tions locate the critical ratios between the dimer phase
and the Néel ordered phase at 0.55 < Jp/Jd < 0.65 and
between the Néel ordered phase and the plaquette phase
at 1.05 < Jp/Jd < 1.10. The plaquette and the dimer
phase present a spin gap, while the Néel ordered phase is
gapless. These results agree with the earlier perturbative
treatments [39]. We have tempted to study this system
using the RSRG-EI technique.

We first have identified 9 sites blocks which maintain
the original lattice along the iterations. Three of them are
pictured in Figure 9. The first one preserves the stoichio-
metric ratio (equal to 2) of the number of plaquette versus
bond interactions, and the simplicity of the interactions is
maintained at each step.

In the second definition the blocks involve 2 plaquettes
(8Jp interactions) and two bonds (2Jd interactions). This
definition should be especially convenient for the Jp >
Jd regime where it lets a unique unpaired electron, and
should become irrelevant for weak Jp/Jd ratios. The third
definition is expected to be relevant in the weak Jp/Jd

regime since the blocks involve 4Jd and 5Jp and let only
one unpaired electron when Jp tends to zero. It should fail
in the strong Jp/Jd regime. Figure 10 pictures the energies
of the different blocks as a function of Jp/(Jp +Jd) and it
appears that

– the stoichiometric blocks are never those of lower en-
ergy;

– the second type of blocks is the one of lowest energy
for Jp/(Jp + Jd) > 0.427.

Figure 9 also represents the interactions between the
blocks. In the three partitions the identification of pla-
quettes of blocks and of dimer interactions between them
appears clearly. However while the stoichiometric blocks
do not introduce 2nd neighbor interactions between blocks
this is no longer true for the two other partitions. These in-
teractions remain much weaker than the nearest-neighbor
ones. Notice that in the 2nd and 3rd definitions tetramers
of blocks define a kind of vortex, and that in the 2nd
definition one has used vortices of opposite rotation direc-
tion. One shall call J

(1)
p the effective coupling between

blocks belonging to the same plaquette of blocks and
J

(1)
d the interaction between blocks belonging to adja-

cent plaquettes of blocks. Figure 11 represents the ratio
λ(1) = J

(1)
p /(J (1)

p + J
(1)
d ) as a function of λ. The results

deserve the following comments

– starting from the stoichiometric blocks, one obtains
two zones, one for λ < 0.438 in which iterating the
process will tend to the λ = 0 (Jp = 0) accumulation
point, i.e., to non interacting dimers. For λ > 0.438 the
accumulation point corresponds to λ = 1, i.e., to non
interacting plaquettes. For λc = 0.438 one has a fixed
repulsive point, for which the ratio λ(n) is constant
at all iterations. Since J

(1)
p and J

(1)
d are lower than 1,

the gap decreases at each iteration, so that there is no
spin gap at this precise point. As clear from Figure 11,

Fig. 10. Block energies (per atom) for the 3 definitions of
the blocks given in Figure 9, as functions λ = Jp/(Jp + Jd).
Definition A (+), definition B (�), and definition C (◦).
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Fig. 11. Evolution of the ratio λ(1) = J
(1)
p /(J

(1)
p + J

(1)
d ) as

a function of λ = Jp/(Jp + Jd), for three definitions of the
blocks (cf. Fig. 9). (-) definition A, (◦) definition B, and (�)
definition C. The values λ′

c and λ′′
c identify the critical ratios.

since the attractive fixed points are reached in a finite
number of iterations when λ �= λc, the model predicts
non zero gaps for both the dimer phase 0 < λ < λc and
the plaquette phase λc < λ < 1. The gapless phase is
reduced to a single value of λ;

– starting from the second and third definitions of
the blocks one observes a non-monotonic behavior of
λ(1) = f(λ). The distance of λ(1) to the straight line
of slope 1 (i.e., the quantity |λ(1) − λ|) goes through a
minimum for both definitions of the blocks. We have
previously observed such a behavior in the study of the
1-D frustrated chain, when varying the ratio λ = j/J
of the 2nd neighbor interaction j to the 1st neigh-
bor interaction J . Calculating the effective interac-
tion J (1) and j(1) between blocks and the ratio λ(1)(λ),
the quantity λ(1)(λ) − λ goes through a minimum for
λ 	 0.24, near the well-known 2nd-order phase tran-
sition. Increasing the size of the blocks we observed
that the minimal value of λ(1)(λ) − λ tends to zero.
It is not possible in the 2-D lattices to perform such
an extrapolation on the block size, but one may con-
sider that the existence of a minimum in the quantity
λ(1) − λ is a signature of a phase transition and the
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extrapolated critical value of the parameter may be
estimated as λ′

c = (λ(1) +λ)/2 for the value of λ which
minimizes |λ(1)−λ| (i.e., ∂(λ(1)−λ)/∂λ = 0). One ob-
tains so λ′

c = 0.500 (J (1)
p /J

(1)
d = 1.000) and λ′′

c = 0.398
(J (1)

p /J
(1)
d = 0.660) which should be the lower and

upper limits of the gapless phase. These values com-
pare quite well with those proposed from the previ-
ously mentioned perturbative [39] or Quantum Monte
Carlo [38] treatments.

5 Phase transition in the 2-D spin frustrated
Shastry-Sutherland lattice

The SrCu2(BO3)2 crystal can be seen as built of rather
distant planes of CuBO3 units. The Copper ions have
a d9 electronic structure and bear a S = 1/2 spin. Fig-
ure 12 schematizes the in-plane structure of this material
(J3 = 0). The Copper atoms are strongly coupled (through
J2) into dimer singlets. The interactions J1 with the four
other neighbors is smaller than J2. This system has at-
tracted much attention (for a review see Ref. [40]), and
is known as the Shastry-Sutherland lattice, the properties
of which depend an the J1/J2 ratio. When J1/J2 = α is
smaller than a critical value αc, the ground state is a pure
product of bond singlets. For α tending to infinity the lat-
tice becomes a simple 2-D lattice, the ground state is a
Néel-ordered phase. At least one phase transition occurs
for a value of α ∼ 0.67 − 0.70 (see below).

The RSRG-EI method has been employed to study
the phase transition in this system, starting from 9 sites
“square” blocks pictured in Figure 12. They define an iso-
morphic lattice at each step. If one calls µ = J1/(J1 +J2),
the first iteration defines a ratio µ(1) = J

(1)
1 /(J (1)

1 +J
(1)
2 ) =

f(µ). Figure 13 gives the evolution of µ(1) in the α > 0.666
(µ > 0.4) regime.

One sees that, for αc = 0.69583 (µc = 0.41032), α(1) =
α (µ(1) = µ). This represents a fixed point of the problem.
For µ > µc the ratio µ(n) increases at each iteration, going
to the µ = 1 accumulation point in an infinite number of
steps since (∂µ(1)/∂µ) �= 0 (actually close to 0.5) when
µ → 1. Hence the system is gapless for α > αc. For α < αc,
α(1) becomes larger than αc, the procedure diverges since
it becomes impossible to identify the target eigenvectors.
This value of the critical ratio αc should be compared
with other estimates. Exact diagonalizations [41] up to 20
sites led to 0.70, Ising expansion [42] to 0.691 and a dimer
expansion [43] to 0.697. Further works have suggested that
this phase transition concerns a intermediate phase which
would be based on either plaquette singlets (αc = 0.677)
according to a plaquette expansion [44] or 0.67 from exact
diagonalizations [45] up to 32 sites, or columnar [46] (αc =
0.69). Our calculation does not allow us to identify an
intermediate phase, the existence of which remains under
discussion [40].
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Fig. 12. Schematic representation of partially frustrated 2-D
square lattices. The Shastry-Sutherland lattice corresponds to
J3 = 0. In the checkerboard lattice J3 = J2. Definition of the
blocks and of their effective interactions.
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Fig. 13. Evolution of the first iteration ratio µ(1) =

J
(1)
1 /(J

(1)
1 + J

(1)
2 ) as a functions of µ = J1/(J1 + J2) for the

Shastry-Sutherland lattice. The phase transition appears for
µ(1) = µ at µc. The stairs illustrate the steps of the iteration
RSRG toward the (J2 = 0) non-frustrated 2-D accumulation
point, and the gapless character of this phase.

We have calculated the cohesive energy for α > αc.
Writing the Hamiltonian as

H =
∑

〈i,j〉NN

2J2(SiSj−1/4)+
∑

〈k,l〉NN′

2(1−J2)(SkSl−1/4),

(24)
where NN and NN ′ represent the couples of atoms con-
nected by J2 = 1 − J1 and J1 respectively, the cohesive
energy in the gapless phase is almost a linear function
of µ, which goes to −2.33231 for µ = 1 (the most accurate
QMC [47] value being −2.33868). With this definition of
the Hamiltonian the energy of the product of bond sin-
glets is equal to −1 whatever J1/J2. The energy obtained
from RSRG-EI iterations is plotted in Figure 14. The con-
sistence of the two independent criteria

– µ(1) = f(µ) (Fig. 13);
– crossing of the cohesive energies Ecoh = f(µ) (Fig. 14)

is very good.
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Fig. 14. Cohesive energy of the Shastry-Sutherland lattice as
a function of µ (cf. Fig. 13).

The first one gives αc = 0.69583, which for the second
αc = 0.67224. This example shows the consistence and
relevance of the method in the study of a 1st-order phase
transition in a frustrated 2-D lattice.

6 The Néel/dimer phase transition
in the J2/J1 checkerboard lattice

The checkerboard lattice (as defined from Fig. 12 when
J2 = J3) can be studied as a function of the (J2/J1) ratio
between the diagonal spin coupling J2 appearing in one
square over two and the spin coupling J1 occurring on the
bonds of the square 2-D lattice. Pyrochlore lattices are a
real material (3-D) where the ratio J2/J1 is equal to 1. In
this regime the checkerboard (or 2-D pyrochlore) lattice
is known to be in a dimer-phase [48,49]. For J2 = 0 the
lattice is a simple 2-D square lattice, in a simple Néel-
ordered gapless phase and a phase transition should occur
in the interval 0 < J2/J1 < 1. We have again used square
(3 × 3) blocks of 9 sites. The new lattice is isomorphic
to the starting one (cf. Fig. 12) producing J

(1)
1 and J

(1)
2 .

The evolution of the ratio ν(1) = J
(1)
2 /(J (1)

1 + J
(1)
2 ) as a

function of a ν = J2/(J1 +J2) is plotted in Figure 15. One
sees that a critical value of ν appears for J2 = 0.8774J1

(ν = 0.46735) for which J
(1)
2 /J

(1)
1 = J2/J1. Below this

critical ratio the system is gapless, since the accumulation
point ν = 0 (simple 2-D square lattice) is reached from the
starting ν value in an infinite number of steps, the slope
(∂ν(1)/∂ν)ν=0 being different from zero at the origin.

7 Conclusion

The present work shows the efficiency of the combined
use of the effective Hamiltonian theory and of the Real
Space Renormalization Group for the study of periodic
spin lattices. The main idea consists in defining periodis-
able blocks in the lattice, with odd number of sites, (or
with even number of sites, but such that the ground state
of the blocks is not a singlet state). The block can than
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Fig. 15. Evolution of the first iteration ratio ν(1) =

J
(1)
2 /(J

(1)
1 + J

(1)
2 ) as a function of ν = J2/(J1 + J2) for the

checkerboard lattice.

be viewed as a pseudo-spin. The effective interactions be-
tween these pseudo-spins can be determined accurately by
solving the Schrodinger equations for dimers or trimers
of blocks, and by using the Bloch’s effective Hamiltonian
theory, which uniquely defines the effective interactions
from the knowledge of the most relevant eigenenergies
and eigenvectors of the starting Hamiltonian. This basic
idea, which introduces effective interactions between the
ground state of the blocks, is general, and can be employed
with other types of starting Hamiltonians, which may be
of Hubbard type, or even the exact Hamiltonians. These
inter-block effective interactions can be used along differ-
ent strategies, one may define blocks of blocks and dimers
or trimers of blocks of blocks, and repeat the research
of the effective interactions between blocks of blocks till
the convergence of the procedure. Following the philos-
ophy of the Wilson’s Real Space Renormalization Group
(RSRG), one generates a RSRG variant (RSRG-EI) which
renormalizes the interactions [4], while the original version
consisted in a simple truncation of the Hilbert space. The
present work has confirmed the efficiency of the RSRG-
EI method illustrated in reference [4]. It has explored the
stability of the results with respect to some degrees of
freedom of the method, namely

– the mode of extraction of the effective interactions,
from dimers or trimers of blocks. Dividing a superblock
into three blocks rather than into two blocks, for the
same size of the superblock, implies a reduction of the
size of the blocks, the consideration of more eigenstates
of the superblocks, hence the consideration of more
physics, but also a complexification of the effective in-
teractions. The use of trimers may give better results
than that of dimers, as seen in the case of two-leg lad-
ders for small rung interactions. Logical arguments en-
able to decide whether the definition of the original in-
teractions requires the consideration of trimers rather
than of dimers;

– the design of the elementary blocks. Two types of par-
titions into blocks have been considered for the two-leg
ladders, one mapping into a F-AF 1-D chain, the other
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one into a dimerized AF 1-D chain, which lead to con-
sistent results.

A possible interest of the RSRG-EI method, compared
to the DMRG, which is certainly of better accuracy but
essentially limited to 1-D systems, is its applicability to
2-D and even 3-D lattices. As a first example the present
paper has studied the impact on the gap of a ferromag-
netic coupling between Cu atoms of adjacent ladders in
the Sr2CuO3 2-D lattice. The RSRG-EI calculation con-
firms the very limited effect of this interaction between
ladders.

A second application concerns the 1/5-depleted square
spin lattice, where the design of different 9 sites blocks
which keep the structure of the original lattice helps to
identify phase transitions. Of course the 2-D spin non-
frustrated lattices can be efficiently studied by Quantum
Monte Carlo techniques, which are very accurate. But
QMC calculations are not possible on spin-frustrated lat-
tices. The here-proposed study of the phase transition in
the Shastry-Sutherland lattice and on the checkerboard
lattice shows that the RSRG-EI technique, which does
not suffer such a limitation, may furnish useful and reli-
able informations on such systems as well.

The authors thank D. Poilblanc and S. Capponi for helpful
discussions.
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